
Project: 
Date:

Xend Finance 
January 31st, 2022

Smart
Contract
Audit

Table of contents

01

. .Summary 03

. .Scope of Work 05

. .Workflow of the auditing process 07

. .Structure and organization of the findings 08

. .Manual Report 09

. 09Possible broke of contracts by upgradable dependency

. 09Missed state update in xVault

. 10Not used setProtectedToken in Strategy

. 10Possible broke of contract by transferring tokens to it

. 11Possible loss in xVault contract

. 11Incorrect profit logic in xAAVE and xBUSD contracts

. 13Wrong interacting with fulcrum contract in xAAVE and xBUSD

. 13Possibility to exceed maximum strategies number at xVault.sol

. 13Ignore the return value of transfer at xVault.sol and BaseStrategy.sol

. 14Variables can be declared as constant at xVault.sol

. 14Lacks a zero-check in the constructor of xVault.sol and functions

. 14Optimization at xVault.sol

. 15Optimization at XAAVE.sol and XUSDT.sol

. 15Illogical use of deposit limit at xVault

. 16Wrong predefined apr address as XAAVE

. 16Missed check for the token in EarnAPYWithPool

. 16Unnecessary event and import statement at xVault .sol

. 17Commented functions at xVault.sol

02

. 17Not proper use of assert at xVault.sol

. 17Not proper use of assert at XAAVE.sol and XUSDT.sol

. .Test results 18

. .Tests are written by Applicature 18

Applicature team has conducted a smart contract audit for the given codebase.

The contracts are in good condition. Based on the fixes provided by the Xend Finance
team and on the quality and security of the codebase provided, Applicature team can
give a score of 99 to the audited smart contracts.

During the auditing process, the Applicature team has found a couple of informational
issues, 7 issues with a low level of severity, 3 issues with a medium level of severity and 7
issues with high level of severity. No critical issues were supposed.

Summary

Severity of the issue

Critical

High

Medium

Low

Informational

Total

0 issue

7 issues

3 issue

7 issue

4 issue

21 issues

Total found

0 issue

7 issues

3 issue

7 issue

4 issue

21 issues

Resolved

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Unresolved

03

04

Applicature auditing team has conducted a bunch of integrated autotests to ensure that
the given codebase has decent performance and security levels.

The testable code is 96.82% which is above the industry standard of 95%.

The test results and the coverage can be found in the accompanying section of this audit
report.

Please mind that this audit does not certify the definite reliability and security level of the
contract. This document describes all vulnerabilities, typos, performance issues, and
security issues found by Applicature auditing team. If the code is under development, we
recommend running one more audit once the code is finalized.

Based on the given findings, risk level, performance,
and code style, Applicature team can grant the
following overall score:

99%

Evaluating the findings, we can assure that the contract is safe to use and all the issues
found are performed only by certain conditions and cases. Under the given
circumstances we can set the following risk level:

High Confidence

Scope of Work

05

Credit Unions, Cooperatives, and Individuals anywhere in the world can now earn
higher interests in stable currencies on their savings.

Within the scope of this audit, two independent auditors deeply investigated the given
codebase and analyze the overall security and performance of smart contracts.

Applicature auditing team has made a review of the following contracts:

APRWithPoolOracle;
EarnAPRWithPool;
XUSDT;
XAAVE;
xVault;
BaseStrategy;
strategyUgoHawkVenusFarm.

The source code was taken from the following sources: 

;

.

https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7
643eebe3d0eb
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443
ca503f3

Initial commits submitted for the audit: 

;

.

https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7
643eebe3d0eb
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443
ca503f3

Last commits: 

;

.

https://github.com/xendfinance/xAuto-Polygon/commit/ef77efc3042018aaa2679ad302
b16912490cba41
https://github.com/xendfinance/x-vault/commits/develop/contracts

https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/xAuto-Polygon/commit/ef77efc3042018aaa2679ad302b16912490cba41
https://github.com/xendfinance/xAuto-Polygon/commit/ef77efc3042018aaa2679ad302b16912490cba41
https://github.com/xendfinance/x-vault/commits/develop/contracts

06

In order to conduct a more detailed audit, Xend Finance has provided the following
documentation: 

.
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=s
haring

https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=sharing
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=sharing

07

Workflow of the auditing process
During the manual phase of the audit, Applicature team manually looks through the code
in order to find any security issues, typos, or discrepancies with the logic of the contract.

Within the testing part, Applicature auditors run integration tests using the Truffle
testing framework. The test coverage and the tests themselves are inserted into this
audit report.

Applicature team uses the most sophisticated and contemporary methods and
techniques to ensure the contract does not have any vulnerabilities or security risks:

Re-entrancy;
Access Management Hierarchy;
Arithmetic Over/Under Flows;
Unexpected Ether;
Delegatecall;
Default Public Visibility;
Hidden Malicious Code
Entropy Illusion (Lack of Randomness);
External Contract Referencing;
Short Address/Parameter Attack;
Unchecked CALL Return Values;
Race Conditions / Front Running;
General Denial Of Service (DOS);
Uninitialized Storage Pointers;
Floating Points and Precision;
Tx.Origin Authentication;
Signatures Replay;
Pool Asset Security (backdoors in the underlying ERC-20).

Structure and organization of the findings

08

For the convenience of reviewing the findings in this report, Applicature auditors
classified them in accordance with the severity of the issues. (from most critical to least
critical). The acceptance criteria are described below.

All issues are marked as "Resolved" or "Unresolved", depending on whether they have
been fixed by or not. The latest commit, indicated in this audit report should include all
the fixes made.

To ease the explanation, the Applicature team has provided a detailed description of the
issues and the recommendation on how to fix them.

Hence, according to the statements above, we classified all the findings in the following
way:

Critical

High

Medium

Low

Informational

The issue bear a definite risk to the contract, so it may affect the ability to
compile or operate.

Major security or operational risk found, that may harm the end-user or
the overall performance of the contract.

The issue affects the contract to operate in a way that doesn’t
significantly hinder its performance.

The found issue has a slight impact on the performance of the contract or
its security.

The issue does not affect the performance or security of the
contract/recommendations on the improvements.

Finding Description

Manual Report

09

Possible broke of contracts by upgradable dependency
High Resolved

Contract Strategy dependence on pre-deployed proxy contract crUSDT. It means that
this proxy contract can be updated and the logic of the Strategy will be broken. In that
case, xVault can not be able to withdraw funds from Strategy and return it to users.

Recommendation:

Implement proxy pattern for Strategy to be able to fix deployed the contract.

Missed state update in xVault
High Resolved

Contract xVault has a tokenBalance variable to store the balance of tokens in the
contract. It is updated whenever xVault receives or sends tokens except in cases when
strategy withdrawn less than the user actually wants to receive.

if (value > token.balanceOf(address(this))) {

 value = token.balanceOf(address(this));

 shares = _sharesForAmount(value);

 }

In this case, the value of actually withdrawn tokens should be equal to tokenBalance but
it’s not. So compile throws runtime error while trying to do subtraction after token
transfer at:

tokenBalance = tokenBalance.sub(value);

Recommendation:

Update the state of tokenBalance inside case mentioned above.

10

Not used in StrategysetProtectedToken
High Resolved

Strategy contracts do not allow the withdrawal of protected tokens from contracts. To
protect them from being withdrawn they should be added to the ‘protected’ list.

Recommendation:

Use in BaseStrategy constructor.setProtectedToken

Possible broke of contract by transferring tokens to it
High Resolved

Contract xVault has a tokenBalance variable to store the number of tokens on it. It can’t
be updated when someone transfers by calling token.transfer. In this case, balanceOf
and tokenBalance will return different values which can lead to miscalculations and
subtraction overflow.

Recommendation:

Add update for tokenBalance on top of withdrawal method.

public nonReentrant returns (uint256) {

tokenBalance = token.balanceOf(address(this));

uint256 shares = maxShare;

11

Possible loss in xVault contract
High Resolved

Contract xVault withdraws tokens from Strategy if it doesn't have enough to pay users.
Withdraw from strategy calculate the loss of investment. After all withdrawals there is a
check for totalLoss to be less than allowed. But in the case when tokens after withdrawal
are not enough check for loss so not included which may lead to an unexpected loss for
the user.

Recommendation:

Move check for a loss right before the actual transfer. And move the totalLoss variable to
the top level of the function scope.

require(totalLoss <= maxLoss.mul(value.add(totalLoss)).div(MAX_BPS), "revert if
totalLoss is more than permitted");

token.safeTransfer(recipient, value);

Incorrect profit logic in and contractsxAAVE xBUSD
High Resolved

Contracts xAAVE and xBUSD interact with different contracts to deposit users' funds in
the best place and generate profit. It means that the contract should increase the pool of
itself to allow users to withdraw more than they deposited initially. But it’s not
happening.

Recommendation:

Recheck logic of profit calculation and interact with aave, fulcrum, and fortube contracts.

Re-Audit:

In xUSDT contract in some cases ‘pool’ can be less than totalDepositedAmount which
can lead to subtraction overflow.

12

Test cases:

When Default
✓ Should deposit [0] (4448ms)

✓ Should deposit [1] (3283ms)

pool 3263
balanceFulcrum 0
balanceAave 3263

✓ Should withdraw [0] (3711ms)

✓ Should withdraw [1] (4058ms)

Owner
✓ Should change lender (1044ms)

✓ Should set new fee (265ms)

✓ Should set new fee address (241ms)

✓ Should set new fee precision
When FULCRUM

✓ Should deposit [0] (3922ms)

✓ Should deposit [1] (3059ms)

pool 2998
balanceFulcrum 2983
balanceAave 0

Deposited values 1000 and 2000, but pool value is only 2998.

Recommendation 2:

Add check if pool is bigger than totalDepositedAmount.

uint256 fee = pool > totalDepositedAmount

 ? pool.sub(totalDepositedAmount).mul(feeAmount).div(feePrecision)

 : 0;

13

Possibility to exceed maximum strategies number at xVault.sol
Medium Resolved

Function and allows to exceed a
 number.

setWithdrawalQueue() addStrategy()
MAXIMUM_STRATEGIES

Recommendation:

Add check for length for those functions.withdrawalQueue

Wrong interacting with fulcrum contract in xAAVE and xBUSD
High Resolved

Contracts xAAVE and xBUSD deposit their funds to fulcrum contract. It did not happen
as expected because the call failed with the error SafeERC20: low-level call failed.

Recommendation:

Recheck the logic behind interacting xAAVE and xBUSD with fulcrum contracts.

Ignore the return value of transfer at and xVault.sol
BaseStrategy.sol

Medium Resolved

In function at tokenBalance is updating but it ignores return value by
 and .

report() xVault.sol
token.transfer() token.transferFrom()

In function at BaseStrategy no check provided for return value of
transfer.

distributeRewards()

Recommendation:

Use , or ensure that the transfer/transferFrom return value is checked.`SafeERC20`

13

Variables can be declared as constant at xVault.sol
Low Resolved

MAX_BPS and SECS_PER_YEAR can be declared as constant.

Recommendation:

Change those variables to constant.

Wrong approve tokens in contractsxAuto
Medium Resolved

In xAuto contracts there are different lenders. xAuto approves tokens for active lenders
on initialize function. When the owner activates a not active initial lender contract calls
rebalance function to deposit on a new lender but since this lender tokens are not
approved it can’t transfer tokens from xAuto.

Recommendation:

One of few:

Approve all lenders on initialization.
Approve a new lender before rebalancing in activateLender function.

Re-Audit:

Fixed.

14

Optimization at xVault.sol
Low Resolved

Multiple usage of require statements msg.sender == governance, msg.sender ==
management,

msg.sender == guardian.

Recommendation:

Сreate a modifier for those checks or add from OpenZeppelin where you
can set all needed roles for access to specific functions.

AccessControl

Optimization at and XAAVE.sol XUSDT.sol
Low Resolved

Functions at XUSDT.sol, XAAVE.sol
and XUSDT.sol are fully duplicates of internal ,

.

balanceFortubeInToken() balanceFulcrumInToken()
functions _ balanceFortubeInToken()

_balanceFulcrumInToken()

Function at XAAVE.sol and XUSDT.sol is internal and never used._rebalance()

Recommendation:

In public functions and you can call
their represented internal functions and return it’s value. If is unnecessary
then just remove it.

balanceFortubeInToken() balanceFulcrumInToken()
_rebalance()

15

Illogical use of deposit limit at xVault
Low Resolved

Contract xVault in deposit function has a check for input amount of zero to deposit all
possible allowed funds. It is calculated by depositLimit - totalAssets which can lead to
subtraction underflow. This check is not included if the amount is greater than zero,
which means that users can’t deposit more than the limit when they deposit zero but can
when more.

Recommendation:

If the logic of checking only when the amount is zero is correct then need to add check
for underflow or even leave it as it is. Otherwise need to add check the global scope of
function.

Wrong predefined apr address as XAAVE
Low Resolved

Apr address at the XAAVE contract in a polygon is not a contract.

Recommendation:

Put correct address.

Lacks a zero-check in the constructor of and functionsxVault.sol
Low Resolved

Constructor parameter and functions , ,
 have no check for zero address.

_governance setTreasury() setGuardian()
setGovernance()

Recommendation:

Check that the address is not zero.

16

Not proper use of assert at and XAAVE.sol XUSDT.sol

Informational Resolved

In function assert is used to check parameters of
.

set_new_feePrecision()
_newFeePrecision

The function should only be used to test for internal errors and to check
invariants.

assert

Recommendation:

Require assert function should be used to ensure valid conditions. Replace with require
with corresponding revert message.

Unnecessary event and import statement at xVault .sol

Informational Resolved

All related functionality to event Is commented and not used farther in
the code. is not used.

UpdateGuestList
IERC20

Recommendation:

Delete this event and all related commented functionality, delete unused import
statement.

Missed check for the token in EarnAPYWithPool

Low Resolved

Contract EarnAPYWithPool has 2 mappings of tokens in fulcrum and fortube to check if
the token exists on this platform. For aave this check is missed which means that some
tokens cannot be processed in getAPROptionsInc.

Recommendation:

Add check for existing token on aave platform.

17

Not proper use of assert at xVault.sol

Informational Resolved

The function should only be used to test for internal errors and to check
invariants.

assert

Recommendation:

Require assert require function should be used to ensure valid conditions. Replace with
with corresponding revert message.

Commented functions at xVault.sol

Informational Resolved

Functions and are commented.setName() setSymbol()

Recommendation:

Remove commented functionality

Test results

18

To verify the contract security and performance a bunch of integration tests were made
using the Truffle testing framework.

Tests were based on the functionality of the code, business logic and requirements and
for the purpose of finding the vulnerabilities in the contacts.

In this section, we provide both tests written by Xend Finance and Applicature auditors.

It's important to note that Applicature auditors do not modify, edit or add tests to the
existing tests provided in the Xend Finance repo. We write totally separate tests with
code coverage of a minimum of 95%, to meet the industry standards.

Tests are written by Applicature

Test Coverage

96.30 61.90 100.00 97.22BaseStrategy.sol

contracts\strategies\ 91.76 67.93 98.33 92.54

xVault.sol

File

APRWithPoolOracle.sol

EarnAPRWithPool.sol

XAAVE.sol

XAAVEProxy.sol

XUSDT.sol

97.66

100.00

100.00

96.92

100.00

97.30

% Stmts

64.47

100.00

80.00

67.78

100.00

74.49

% Branch

100.00

100.00

100.00

98.18

0.00

95.16

% Funcs

96.92

100.00

100.00

96.91

100.00

97.26

% Lines

... 586, 599, 768

... 252, 331, 332

... 236, 282, 291

... 627, 697, 703

Uncovered lines

18

... 627, 697, 703Strategy.sol 91.46 69.72 97.22 91.13

All Files 96.82 76.25 87.65 96.88

19

Test Results

Contract: EarnAPRWithPool/APRWithPoolOracle
Initialize
✓ Should deploy (3003ms)

APRWithPoolOracle
✓ Should call getFulcrumAPRAdjusted (5714ms)

✓ Should call getAaveAPRAdjusted (8278ms)

✓ Should call getFortubeAPRAdjusted (4990ms)

EarnAPRWithPool
✓ Should change apr (224ms)

✓ Should addFToken (665ms)

✓ Should recommend (3065ms)

Contract: EarnAPRWithPool
Initialize
✓ Should deploy (573ms)

✓ Should change apr (209ms)

Success
✓ Should addFToken (1135ms)

Contract: XUSDT
Initialize
✓ Should deploy (15043ms)

✓ Should change apr (328ms)

✓ Should deactivate 2 and 3 lenders (7038ms)

✓ Should set new fee amount (272ms)

Ownable
✓ Owner should be set (345ms)

✓ Should change owner (620ms)

✓ Should NOT call if not owner (388ms)

✓ Should change owner (537ms)

✓ Should set new fee address (341ms)

Lending
When AAVE
✓ Should deposit [1] (7961ms)

✓ Should advanceBlockAtTime (156ms)

✓ Should deposit [2] (4744ms)

✓ Should increase pool size (2598ms)

✓ Should deposit [2] (3925ms)

20

✓ Should transfer [2 -> 3] (937ms)

✓ Should withdraw [1] (3570ms)

✓ Should withdraw [2] (3039ms)

✓ Should increase pool size (2595ms)

✓ Should withdraw [3] (4808ms)

✓ Fee should be payed (199ms)

Owner
✓ Should deactivate WithdrawableLender (1588ms)

✓ Should change lender (13378ms)

✓ Should set new fee (219ms)

✓ Should set new fee precision (479ms)

When FULCRUM
✓ Should deposit [1] (3039ms)

✓ Should advanceBlockAtTime (123ms)

✓ Should deposit [2] (2463ms)

✓ Should increase pool size (2455ms)

✓ Should deposit [2] (4218ms)

✓ Should transfer [2 -> 3] (711ms)
✓ Should withdraw [1] (4297ms)

✓ Should withdraw [2] (3035ms)

✓ Should increase pool size (3243ms)

✓ Should withdraw [3] (4493ms)

✓ Fee should be payed (118ms)

Owner
✓ Should change lender (3415ms)

✓ Should call getPricePerFullShare (227ms)

When FORTUBE
✓ Should advanceBlockAtTime (106ms)

✓ Should deposit [2] (3136ms)

✓ Should increase pool size (3084ms)

✓ Should deposit [2] (13531ms)

✓ Should transfer [2 -> 3] (469ms)

✓ Should withdraw [1] (3774ms)

✓ Should withdraw [2] (3225ms)

✓ Should increase pool size (2162ms)

✓ Should withdraw [3] (4616ms)

✓ Fee should be payed (171ms)

Renounce Ownership
✓ should call renounceOwnership (359ms)

ERC20

21

✓ Should deploy (1123ms)

✓ Should call standart erc20 functions (5019ms)

Contract: XAAVE
Initialize
✓ Should deploy (18534ms)

✓ Should change apr (274ms)

Ownable
✓ Owner should be set (143ms)

✓ Should change owner (631ms)

✓ Should NOT call if not owner (206ms)

✓ Should change owner (625ms)

✓ Should set new fee address (279ms)

Success
When Default
✓ Should deposit [1] (8516ms)

✓ Should advanceBlockAtTime (73ms)

✓ Should deposit [2] (2693ms)

✓ Should increase pool size (1613ms)

✓ Should deposit [2] (2132ms)

✓ Should transfer [2 -> 3] (723ms)

✓ Should withdraw [1] (4106ms)

✓ Should withdraw [2] (2563ms)

✓ Should increase pool size (1951ms)

✓ Should withdraw [3] (2637ms)

✓ Fee should be payed (170ms)

Owner
✓ Should deactivate WithdrawableLender (723ms)

✓ Should change lender (2232ms)

✓ Should set new fee (174ms)

✓ Should set new fee address (269ms)

✓ Should set new fee precision (318ms)

When FULCRUM
✓ Should deposit [1] (2206ms)

✓ Should advanceBlockAtTime (73ms)

✓ Should deposit [2] (2145ms)

✓ Should increase pool size (1847ms)

✓ Should deposit [2] (2584ms)

✓ Should transfer [2 -> 3] (564ms)

✓ Should withdraw [1] (2680ms)

✓ Should withdraw [2] (2129ms)

22

✓ Should increase pool size (1775ms)

✓ Should withdraw [3] (2544ms)

✓ Fee should be payed (149ms)

Owner
✓ Should deactivateNonWithdrawableLender (1487ms)

✓ Should call getPricePerFullShare (180ms)

Renounce Ownership
✓ should call renounceOwnership (425ms)

ERC20
✓ Should deploy (1239ms)

✓ Should call standart erc20 functions (3831ms)

Contract: BaseStrategy
Initialize
✓ Should deploy (23793ms)

Success
✓ Should call delegatedAssets (140ms)

✓ Should call harvestTrigger [when not activated] (1687ms)

✓ Should call harvestTrigger [when block.timestamp.sub
(params.lastReport) >= maxReportDelay] (1626ms)

✓ Should call harvestTrigger [when outstanding > debtThreshold] (473ms)

✓ Should call harvestTrigger [when total.add(debtThreshold) <
params.totalDebt] (361ms)

✓ Should call harvestTrigger [when total > params.totalDebt] (373ms)

✓ Should call harvestTrigger [when profitFactor.mul(callCost) <
credit.add(profit)] (801ms)

✓ Should distributeRewards (1902ms)

Contract: xVault [1]
Initialize
✓ Should deploy (4068ms)

✓ Should setGovernance (321ms)

✓ Should setGovernance (333ms)

✓ Should setDepositLimit (3374ms)

✓ Should setTreasury (428ms)

✓ Should setGuardian (420ms)

✓ Should setPerformanceFee (174ms)

✓ Should setManagementFee (195ms)

✓ Should addStrategy [0] (8140ms)

Success
Strategy [0]

23

Setup strategy
✓ Should call apiVersion (119ms)

✓ Should call delegatedAssets (181ms)

✓ Should call name (92ms)

✓ Should setStrategist (234ms)
✓ Should setKeeper (172ms)

✓ Should setRewards (187ms)

✓ Should setMinXvsToSell (276ms)

✓ Should setMinWant (221ms)

✓ Should setCollateralTarget (1993ms)

Investments
✓ Should deposit { user: 0xf24... } (1442ms)

✓ Should deposit { user: 0x686... } (1593ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: false, harvestTrigger: 7500000 } (26935ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: false, harvestTrigger: 7500000 } (1835ms)

✓ Should withdraw { user: 0x686... } (735ms)

✓ Should deposit { user: 0x686... } (972ms)

✓ Should withdraw { user: 0x686... } (720ms)

✓ Should call getblocksUntilLiquidation (392ms)

Change strategy
Owner
✓ Should addStrategy [1] (6089ms)

✓ Should removeStrategyFromQueue [0] (324ms)

Strategy [1]
✓ Should deposit { user: 0xf24... } (968ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: false, harvestTrigger: false } (9274ms)

✓ Should withdraw { user: 0xf24... } (628ms)

Owner
✓ Should addStrategyToQueue [0] (284ms)

✓ Should updateStrategyDebtRatio (322ms)

✓ Should updateStrategyRateLimit (229ms)

✓ Should updateStrategyPerformanceFee (235ms)

Strategy [0, 1]
✓ Should deposit { user: 0xf24... } (979ms)

✓ Should deposit { user: 0x686... } (1211ms)

✓ Should call expectedReturn [0] (686ms)

✓ Should call creditAvailable [0] (192ms)

24

✓ Should call availableDepositLimit (131ms)

✓ Should call pricePerShare (172ms)

✓ Should call maxAvailableShares (235ms)

✓ Should call totalAssets (155ms)

✓ Should call getApy (121ms)

✓ Should call delegatedAssets [0] (154ms)

✓ Should setProfitFactor [0] (159ms)

✓ Should setDebtThreshold [0] (189ms)
✓ Should setMaxReportDelay [0] (179ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: 7500000, harvestTrigger: 7500000 } (11564ms)

✓ Should withdraw { user: 0xf24... } (1076ms)

✓ Should deposit { user: 0x686... } (975ms)
✓ Should trigger harvest/tend { delay: 43200000, tendTrigger:

7500000, harvestTrigger: 7500000 } (14564ms)
Owner
✓ Should deploy strategy [2] (3503ms)

✓ Should tend [0] (457ms)

✓ Should setForceMigrate [0] (247ms)

✓ Should migrateStrategy [0 -> 2] (3306ms)

✓ Should setEmergencyExit [1] (3072ms)

✓ Should setWithdrawalQueue (342ms)

Strategy [2]
When !flashLoanActive
✓ Should setFlashLoan to false (645ms)

When !deficit
✓ Should deposit { user: 0xf24... } (1178ms)

✓ Should deposit { user: 0x686... } (1103ms)

✓ Should trigger harvest/tend { delay: 43200000, tendTrigger:
7500000, harvestTrigger: 7500000 } (3917ms)

✓ Should withdraw { user: 0xf24... } (718ms)

✓ Should withdraw { user: 0x686... } (1385ms)

Owner
✓ Should deploy strategy [3] (6006ms)

Strategy [3]
When !flashLoanActive
When !deficit
✓ Should deposit { user: 0xf24... } (1098ms)

✓ Should deposit { user: 0x686... } (912ms)

✓ Should harvest { delay: 43200000 } (3028ms)

25

✓ Should withdraw { user: 0xf24... } (675ms)

✓ Should setFlashLoan to false (458ms)

✓ Should deposit { user: 0xf24... } (1157ms)

✓ Should deposit { user: 0x686... } (1098ms)

✓ Should harvest { delay: 43200000 } (1934ms)

✓ Should withdraw { user: 0xf24... } (582ms)

✓ Should withdraw { user: 0x686... } (1549ms)

Owner
✓ Should deploy strategy [4] (3892ms)

✓ Should migrate strategy [3 -> 4] (6840ms)
When emergency shutdown
✓ Should deposit { user: 0xf24... } (1221ms)

✓ Should deposit { user: 0x686... } (1083ms)

✓ Should setEmergencyShutdown (1693ms)

✓ Should harvest { delay: 43200000 } (2909ms)

✓ Should withdraw { user: 0xf24... } (727ms)

✓ Should withdraw { user: 0x686... } (775ms)

✓ Should NOT deposit
When strategy recieves wrong tokens
✓ Should setProtectedTokens (2130ms)

✓ Should send token to strategy (410ms)

✓ Should sweep token (1110ms)

Contract: xVault [2]
Initialize
✓ Should deploy (3724ms)

✓ Should setGovernance (372ms)

✓ Should setGovernance (453ms)

✓ Should setDepositLimit (251ms)

✓ Should setTreasury (311ms)

✓ Should setGuardian (398ms)

✓ Should setPerformanceFee (180ms)

✓ Should setManagementFee (180ms)

✓ Should addStrategy [0] (1802ms)

When !flashLoanActive
When deficit
✓ Should deposit { user: 0xf24... } (1151ms)

✓ Should deposit { user: 0x686... } (1252ms)

✓ Should harvest { delay: 43200000 } (4759ms)

✓ Should withdraw { user: 0xf24... } (866ms)

26

✓ Should setFlashLoan to false (546ms)

✓ Should deposit { user: 0xf24... } (1382ms)

✓ Should deposit { user: 0x686... } (1226ms)

✓ Should harvest { delay: 43200000 } (10056ms)

✓ Should withdraw { user: 0xf24... } (761ms)

✓ Should withdraw { user: 0x686... } (2632ms)

214 passing (9m)

Website:
Email:

applicature.com
info@applicature.com

We are delighted to have a chance to work
together with team and contribute to their
success by reviewing and certifying the security
of the smart contracts.

The statements made in this document should not
be interpreted as investment or legal advice, nor
should its authors be held accountable for
decisions made based on them.

https://applicature.com
mailto:info@applicature.com

