
Project: 
Date:

Xend Finance 
April 26th, 2022

Smart 
Contract

Audit

01

Table of contents
. .Summary 03

. .Scope of Work 05

. .Workflow of the auditing process 07

. .Structure and organization of the findings 08

. .Manual Report 09

High Resolved

. 09Possible broke of contracts by upgradable dependency

High Resolved

. 09Possible broke of contract by transferring tokens to it

High Resolved

. 10Missed state update in xVault

High Resolved

. 10Not used in StrategysetProtectedToken

High Resolved

. 11Possible loss in xVault contract

High Resolved

. 11Wrong interacting with fulcrum contract in xAAVE and xBUSD

High Resolved

. 12Incorrect profit logic in xAAVE and xBUSD contracts

Medium Resolved

. 13Possibility to exceed maximum strategies number at xVault.sol

Medium Resolved

. 13Ignore the return value of transfer at xVault.sol and BaseStrategy.sol

Medium Resolved

. 14Wrong approve tokens in xAuto contracts

02

Low Resolved

. 14Optimization at XAAVE.sol and XUSDT.solgy

Low Resolved

. 15Variables can be declared as constant at xVault.sol

Low Resolved

. 15Optimization at xVault.sol

Low Resolved

. 15Lacks a zero-check in the constructor of xVault.sol and functions

Low Resolved

. 16Illogical use of deposit limit at xVault

Low Resolved

. 16Wrong predefined apr address as XAAVE

Low Resolved

. 16Missed check for the token in EarnAPYWithPool

Informational Resolved

. 17Unnecessary event and import statement at xVault.sol

Informational Resolved

. 17Commented functions at xVault.sol

Informational Resolved

. 17Not proper use of assert at xVault.sol

Informational Resolved

. 18Not proper use of assert at XAAVE.sol and XUSDT.sol

. .Test results 19

. .Tests are written by Vidma 20

03

Summary
Vidma team has conducted a smart contract audit for the given codebase.

The contracts are in good condition. Based on the fixes provided by the Xend
Finance team and on the quality and security of the codebase provided, Vidma
team can give a score of 99 to the audited smart contracts.

During the auditing process, the Vidma team has found a couple of informational
issues, 7 issues with a low level of severity, 3 issues with a medium level of
severity, and 7 issues with a high level of severity. No critical issues were
supposed.

Severity of the issue

Critical

High

Medium

Low

Informational

Total

0 issues

7 issues

3 issues

7 issue

4 issues

21 issues

Total found

0 issues

7 issues

3 issues

7 issues

4 issues

21 issues

Resolved

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Unresolved

Evaluating the findings, we can assure that the contract is safe to use and all the
issues found are performed only by certain conditions and cases. Under the given
circumstances we can set the following risk level:

High Confidence

04

Based on the given findings, risk level,
performance, and code style, Vidma team can
grant the following overall score: 99.00

Vidma auditing team has conducted a bunch of integrated autotests to ensure
that the given codebase has decent performance and security levels. The test
results and the coverage can be found in the accompanying section of this audit
report.

Please mind that this audit does not certify the
definite reliability and security level of the
contract. This document describes all
vulnerabilities, typos, performance issues, and
security issues found by Vidma auditing team.
If the code is under development, we
recommend run one more audit once the code
is finalized.

!

05

Credit Unions, Cooperatives, and Individuals anywhere in the world can now
earn higher interests in stable currencies on their savings.

Within the scope of this audit, two independent auditors deeply investigated the
given codebase and analyzed the overall security and performance of smart
contracts.

Vidma auditing team has made a review of the following contracts:

APRWithPoolOracle;
EarnAPRWithPool;
XUSDT;
XAAVE;
xVault;
BaseStrategy;
strategyUgoHawkVenusFarm.

The source code was taken from the following sources:

https://github.com/xendfinance/polygon-earn/commit/aecc6501

5a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/x-vault/commit/188d55c68c02f

84597ce35ad67ab90443ca503f3

Initial commits submitted for the audit:

188d55c68c02f84597ce35ad67ab90443ca503f3
aecc65015a227ad56995ef78cab7643eebe3d0eb

Last commits:

ef77efc3042018aaa2679ad302b16912490cba41
c53a2ce6a88554a1f68b99e3f5236e0409ef76b9

Scope of work

https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/x-vault/commit/188d55c68c02f84597ce35ad67ab90443ca503f3
https://github.com/xendfinance/polygon-earn/commit/aecc65015a227ad56995ef78cab7643eebe3d0eb
https://github.com/xendfinance/xAuto-Polygon/commit/ef77efc3042018aaa2679ad302b16912490cba41
https://github.com/xendfinance/x-vault/commit/c53a2ce6a88554a1f68b99e3f5236e0409ef76b9

06

In order to conduct a more detailed audit, Xend Finance has provided the
following documentation: 
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9
V?usp=sharing

https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=sharing
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=sharing

Workflow of the auditing
process
During the manual phase of the audit, Vidma team manually looks through the
code in order to find any security issues, typos, or discrepancies with the logic of
the contract.

Within the testing part, Vidma auditors run integration tests using the Truffle
testing framework. The test coverage and the tests themselves are inserted into
this audit report.

Vidma team uses the most sophisticated and contemporary methods and
techniques to ensure the contract does not have any vulnerabilities or security
risks:

Re-entrancy;
Access Management Hierarchy;
Arithmetic Over/Under Flows;
Unexpected Ether;
Delegatecall;
Default Public Visibility;
Hidden Malicious Code;
Entropy Illusion (Lack of Randomness);
External Contract Referencing;
Short Address/Parameter Attack;
Unchecked CALL Return Values;
Race Conditions / Front Running;
General Denial Of Service (DOS);
Uninitialized Storage Pointers;
Floating Points and Precision;
Tx.Origin Authentication;
Signatures Replay;
Pool Asset Security (backdoors in the underlying ERC-20).

07

Structure and organization of
the findings
For the convenience of reviewing the findings in this report, Vidma auditors
classified them in accordance with the severity of the issues. (from most critical
to least critical). The acceptance criteria are described below.

All issues are marked as "Resolved" or "Unresolved", depending on whether they
have been fixed by Xend Finance or not. The latest commit, indicated in this audit
report should include all the fixes made.

To ease the explanation, the Vidma team has provided a detailed description of
the issues and recommendations on how to fix them.

Hence, according to the statements above, we classified all the findings in the
following way:

Critical

High

Medium

Low

Informational

The issue bear a definite risk to the contract, so it may
affect the ability to compile or operate.

Major security or operational risk found, that may harm
the end-user or the overall performance of the contract.

The issue affects the contract to operate in a way that
doesn’t significantly hinder its performance.

The found issue has a slight impact on the performance
of the contract or its security.

The issue does not affect the performance or security of
the contract/recommendations on the improvements.

Finding Description

08

Manual Report

09

Possible broke of contracts by upgradable dependency
High Resolved

Contract Strategy dependence on pre-deployed proxy contract crUSDT. It means
that this proxy contract can be updated and the logic of the Strategy will be
broken. In that case, xVault can not be able to withdraw funds from Strategy and
return it to users.

Recommendation:

Implement proxy pattern for Strategy to be able to fix deployed the contract.

Possible broke of contract by transferring tokens to it
High Resolved

Contract xVault has a variable to store the number of tokens on it. It
can’t be updated when someone transfers by calling . In this case,
balanceOf and will return different values which can lead to
miscalculations and subtraction overflow.

tokenBalance
token.transfer

tokenBalance

Recommendation:

Add update for on top of withdrawal method.tokenBalance

) public nonReentrant returns (uint256) {

 tokenBalance = token.balanceOf(address(this));

 uint256 shares = maxShare;

10

Not used in StrategysetProtectedToken
High Resolved

Strategy contracts do not allow the withdrawal of protected tokens from
contracts. To protect them from being withdrawn they should be added to the
‘protected’ list.

Recommendation:

Use in BaseStrategy constructor.setProtectedToken

Missed state update in xVault
High Resolved

Contract xVault has a variable to store the balance of tokens in the
contract. It is updated whenever xVault receives or sends tokens except in cases
when strategy withdrawn less than the user actually wants to receive.

tokenBalance

if (value > token.balanceOf(address(this))) {

 value = token.balanceOf(address(this));

 shares = _sharesForAmount(value);

 }

In this case, the value of actually withdrawn tokens should be equal to
 but it’s not. So compile throws runtime error while trying to do

subtraction after token transfer at:
tokenBalance

tokenBalance = tokenBalance.sub(value);

Recommendation:

Update the state of inside case mentioned above. tokenBalance

11

Possible loss in xVault contract
High Resolved

Contract xVault withdraws tokens from Strategy if it doesn't have enough to pay
users. Withdraw from strategy calculate the loss of investment. After all
withdrawals there is a check for to be less than allowed. But in the case
when tokens after withdrawal are not enough check for loss so not included which
may lead to an unexpected loss for the user.

totalLoss

Recommendation:

Move check for a loss right before the actual transfer. And move the
variable to the top level of the function scope.

totalLoss

require(totalLoss <= maxLoss.mul(value.add(totalLoss)).div(MAX_BPS),
"revert if totalLoss is more than permitted");

token.safeTransfer(recipient, value);

Wrong interacting with fulcrum contract in xAAVE and
xBUSD

High Resolved

Contracts xAAVE and xBUSD deposit their funds to fulcrum contract. It did not
happen as expected because the call failed with the error SafeERC20: low-level
call failed.

Recommendation:

Recheck the logic behind interacting xAAVE and xBUSD with fulcrum contracts.

require(totalLoss <= maxLoss.mul(value.add(totalLoss)).div(MAX_BPS),
"revert if totalLoss is more than permitted");

token.safeTransfer(recipient, value);

12

Incorrect profit logic in xAAVE and xBUSD contracts
High Resolved

Contracts xAAVE and xBUSD interact with different contracts to deposit users'
funds in the best place and generate profit. It means that the contract should
increase the pool of itself to allow users to withdraw more than they deposited
initially. But it’s not happening.

Recommendation:

Recheck logic of profit calculation and interact with aave, fulcrum, and fortube
contracts.

Re-Audit:

In xUSDT contract in some cases ‘pool’ can be less than
which can lead to subtraction overflow. Test cases:

totalDepositedAmount

When Default
✓ Should deposit [0] (4448ms)

✓ Should deposit [1] (3283ms)

pool 3263
balanceFulcrum 0
balanceAave 3263

✓ Should withdraw [0] (3711ms)

✓ Should withdraw [1] (4058ms)

Owner
✓ Should change lender (1044ms)

✓ Should set new fee (265ms)

✓ Should set new fee address (241ms)

✓ Should set new fee precision
When FULCRUM

✓ Should deposit [0] (3922ms)

✓ Should deposit [1] (3059ms)

pool 2998
balanceFulcrum 2983
balanceAave 0

13

Deposited values 1000 and 2000, but pool value is only 2998.

Recommendation 2:

Add check if pool is bigger than .totalDepositedAmount

uint256 fee = pool > totalDepositedAmount

 ?
pool.sub(totalDepositedAmount).mul(feeAmount).div(feePrecision)

 : 0;

Possibility to exceed maximum strategies number at
xVault.sol

Medium Resolved

Function and allows to exceed a
 number.

setWithdrawalQueue() addStrategy()
MAXIMUM_STRATEGIES

Recommendation:

Add check for length for those functions.withdrawalQueue

Ignore the return value of transfer at xVault.sol and
BaseStrategy.sol

Medium Resolved

In function at xVault.sol is updating but it ignores return
value by and .

report() tokenBalance
token.transfer() token.transferFrom()

In function at BaseStrategy no check provided for return value
of transfer.

distributeRewards()

Recommendation:

Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

14

Wrong approve tokens in xAuto contracts
Medium Resolved

In xAuto contracts there are different lenders. xAuto approves tokens for active
lenders on initialize function. When the owner activates a not active initial lender
contract calls rebalance function to deposit on a new lender but since this lender
tokens are not approved it can’t transfer tokens from xAuto.

Recommendation:

One of few:

1) Approve all lenders on initialization;
2) Approve a new lender before rebalancing in function.activateLender

Re-Audit:

Fixed.

Optimization at XAAVE.sol and XUSDT.sol
Low Resolved

Functions at XUSDT.sol,
XAAVE.sol and XUSDT.sol are fully duplicates of internal functions

, .

balanceFortubeInToken() balanceFulcrumInToken()

_balanceFortubeInToken() _balanceFulcrumInToken()

Function at XAAVE.sol and XUSDT.sol is internal and never used._rebalance()

Recommendation:

In public functions and you can
call their represented internal functions and return it’s value. If is
unnecessary then just remove it.

balanceFortubeInToken() balanceFulcrumInToken()
_rebalance()

15

Optimization at xVault.sol
Low Resolved

Multiple usage of require statements

msg.sender == governance, msg.sender == management,

msg.sender == guardian.

Recommendation:

Сreate a modifier for those checks or add from OpenZeppelin
where you can set all needed roles for access to specific functions.

AccessControl

Variables can be declared as constant at xVault.sol
Low Resolved

MAX_BPS SECS_PER_YEAR and can be declared as constant.

Recommendation:

Change those variables to constant.

Lacks a zero-check in the constructor of xVault.sol and
functions

Low Resolved

Constructor parameter and functions , ,
 have no check for zero address.

_governance setTreasury() setGuardian()
setGovernance()

Recommendation:

Check that the address is not zero.

16

Illogical use of deposit limit at xVault
Low Resolved

Contract xVault in function has a check for input amount of zero to
deposit all possible allowed funds. It is calculated by
which can lead to subtraction underflow. This check is not included if the amount
is greater than zero, which means that users can’t deposit more than the limit
when they deposit zero but can when more.

deposit
depositLimit - totalAssets

Recommendation:

If the logic of checking only when the amount is zero is correct then need to add
check for underflow or even leave it as it is. Otherwise need to add check the
global scope of function.

Wrong predefined apr address as XAAVE
Low Resolved

Apr address at the XAAVE contract in a polygon is not a contract.

Recommendation:

Put correct address.

Missed check for the token in EarnAPYWithPool
Low Resolved

Contract EarnAPYWithPool has 2 mappings of tokens in fulcrum and fortube to
check if the token exists on this platform. For aave this check is missed which
means that some tokens cannot be processed in .getAPROptionsInc

Recommendation:

Add check for existing token on aave platform.

17

Unnecessary event and import statement at xVault.sol
Informational Resolved

All related functionality to event Is commented and not used
farther in the code.

UpdateGuestList

IERC20 is not used.

Recommendation:

Delete this event and all related commented functionality, delete unused import
statement.

Commented functions at xVault.sol
Informational Resolved

Functions and are commented.setName() setSymbol()

Recommendation:

Remove commented functionality.

Not proper use of assert at xVault.sol
Informational Resolved

The assert function should only be used to test for internal errors and to check
invariants.

Recommendation:

Require function should be used to ensure valid conditions. Replace assert with
require with corresponding revert message.

18

Not proper use of assert at XAAVE.sol and XUSDT.sol
Informational Resolved

In function assert is used to check parameters of
.

set_new_feePrecision()
_newFeePrecision

The assert function should only be used to test for internal errors and to check
invariants.

Recommendation:

Require function should be used to ensure valid conditions. Replace assert with
require with corresponding revert message.

Test results

19

To verify the contract security and performance a bunch of integration tests was
made using the Truffle testing framework.

Tests were based on the functionality of the code, business logic, and
requirements and for the purpose of finding the vulnerabilities in the contacts.

In this section, we provide tests written by Vidma auditors.

It's important to note that Vidma auditors do not modify, edit or add tests to the
existing tests provided in the Xend Finance repo. We write totally separate tests
with code coverage of a minimum of 95%, to meet the industry standards.

Vidma Coverage

Industry Standard

0% 25% 50% 100%75%

Vidma: 96.82% Standartd: 95%

20

Tests are written by Vidma

Test Coverage

File

APRWithPoolOracle

XUSDT

Strategy

XAAVE

EarnAPRWithPool

XAAVEProxy

xVault

BaseStrategy

All files

100.00

97.30

91.46

96.92

100.00

100

97.66

96.47

96.52

% Stmts

100.00

74.49

69.72

67.78

80.00

100

64.47

61.90

76.24

% Branch

100.00

95.16

97.22

98.18

100.00

0.00

100.00

100.00

87.65

% Funcs

100.00

97.26

91.13

96.91

100.00

100.00

96.92

97.62

96.88

% Lines

Test Results

Contract: EarnAPRWithPool/APRWithPoolOracle
Initialize

✓ Should deploy (3003ms)

APRWithPoolOracle
✓ Should call getFulcrumAPRAdjusted (5714ms)

✓ Should call getAaveAPRAdjusted (8278ms)

21

✓ Should call getFortubeAPRAdjusted (4990ms)

EarnAPRWithPool
✓ Should change apr (224ms)

✓ Should addFToken (665ms)

✓ Should recommend (3065ms)

for another token's amount correctly (99ms)

✓ should return ETH price correctly (313ms)

✓ should return token price correctly (647ms)

✓ should return Eth amount with slippage correctly (152ms)

✓ should set path correctly (1430ms)

Contract: EarnAPRWithPool
Initialize

✓ Should deploy (573ms)

✓ Should change apr (209ms)

Success
✓ Should addFToken (1135ms)

Contract: XAAVE
Initialize

✓ Should deploy (18534ms)

✓ Should change apr (274ms)

Ownable
✓ Owner should be set (143ms)

✓ Should change owner (631ms)

✓ Should NOT call if not owner (206ms)

✓ Should change owner (625ms)

✓ Should set new fee address (279ms)

Success
When Default

✓ Should deposit [1] (8516ms)

✓ Should advanceBlockAtTime (73ms)

✓ Should deposit [2] (2693ms)

✓ Should increase pool size (1613ms)

✓ Should deposit [2] (2132ms)

✓ Should transfer [2 -> 3] (723ms)

✓ Should withdraw [1] (4106ms)

✓ Should withdraw [2] (2563ms)

✓ Should increase pool size (1951ms)

✓ Should withdraw [3] (2637ms)

✓ Fee should be payed (170ms)

Owner

22

✓ Should deactivate WithdrawableLender (723ms)

✓ Should change lender (2232ms)

✓ Should set new fee (174ms)

✓ Should set new fee address (269ms)

✓ Should set new fee precision (318ms)

When FULCRUM
✓ Should deposit [1] (2206ms)

✓ Should advanceBlockAtTime (73ms)

✓ Should deposit [2] (2145ms)

✓ Should increase pool size (1847ms)

✓ Should deposit [2] (2584ms)

✓ Should deposit [2] (2584ms)

✓ Should transfer [2 -> 3] (564ms)
✓ Should withdraw [1] (2680ms)

✓ Should withdraw [2] (2129ms)

✓ Should increase pool size (1775ms)

✓ Should withdraw [3] (2544ms)

✓ Fee should be payed (149ms)

Owner
✓ Should deactivateNonWithdrawableLender (1487ms)

✓ Should call getPricePerFullShare (180ms)

Renounce Ownership
✓ should call renounceOwnership (425ms)

 ERC20
✓ Should deploy (1239ms)

✓ Should call standart erc20 functions (3831ms)

Contract: XUSDT
Initialize

✓ Should deploy (15043ms)

✓ Should change apr (328ms)

✓ Should deactivate 2 and 3 lenders (7038ms)

✓ Should set new fee amount (272ms)

Ownable
✓ Owner should be set (345ms)

✓ Should change owner (620ms)

✓ Should NOT call if not owner (388ms)

✓ Should change owner (537ms)
✓ Should set new fee address (341ms)

Lending
When AAVE

✓ Should deposit [1] (7961ms)

23

✓ Should advanceBlockAtTime (156ms)

✓ Should deposit [2] (4744ms)

✓ Should increase pool size (2598ms)

✓ Should deposit [2] (3925ms)

✓ Should transfer [2 -> 3] (937ms)

✓ Should withdraw [1] (3570ms)
✓ Should withdraw [2] (3039ms)

✓ Should increase pool size (2595ms)

✓ Should withdraw [3] (4808ms)

✓ Fee should be payed (199ms)

Owner
✓ Should deactivate WithdrawableLender (1588ms)
✓ Should change lender (13378ms)

✓ Should set new fee (219ms)

✓ Should set new fee precision (479ms)

When FULCRUM
✓ Should deposit [1] (3039ms)
✓ Should advanceBlockAtTime (123ms)

✓ Should deposit [2] (2463ms)

✓ Should increase pool size (2455ms)

✓ Should deposit [2] (4218ms)

✓ Should transfer [2 -> 3] (711ms)

✓ Should withdraw [1] (4297ms)

✓ Should withdraw [2] (3035ms)
✓ Should increase pool size (3243ms)

✓ Should withdraw [3] (4493ms)

✓ Fee should be payed (118ms)

Owner
✓ Should change lender (3415ms)

✓ Should call getPricePerFullShare (227ms)

When FORTUBE
✓ Should advanceBlockAtTime (106ms)

✓ Should deposit [2] (3136ms)

✓ Should increase pool size (3084ms)

✓ Should deposit [2] (13531ms)

✓ Should transfer [2 -> 3] (469ms)

✓ Should withdraw [1] (3774ms)

✓ Should withdraw [2] (3225ms)
✓ Should increase pool size (2162ms)

✓ Should increase pool size (4616ms)

✓ Fee should be payed (171ms)

Renounce Ownership

24

✓ should call renounceOwnership (359ms)

ERC20
✓ Should deploy (1123ms)

✓ Should call standart erc20 functions (1519ms)

Contract: BaseStrategy
Initialize

✓ Should deploy (16829ms)

Success
✓ Should call delegatedAssets (155ms)

✓ Should call harvestTrigger [when not activated] (1608ms)

✓ Should call harvestTrigger [when block.timestamp.
sub(params.lastReport) >= maxReportDelay] (1931ms)

✓ Should call harvestTrigger [when outstanding
> debtThreshold] (400ms)

✓ Should call harvestTrigger [when total.add(debtThreshold)
< params.totalDebt] (456ms)

✓ Should call harvestTrigger [when total
> params.totalDebt] (488ms)

✓ Should call harvestTrigger [when profitFactor.mul(callCost)
< credit.add(profit)] (899ms)

✓ Should distributeRewards (2351ms)

Contract: xVault [2]
Initialize

✓ Should deploy (7470ms)

✓ Should setGovernance (400ms)

✓ Should setGovernance (453ms)

✓ Should setDepositLimit (459ms)

✓ Should setTreasury (620ms)

✓ Should setGuardian (388ms)

✓ Should setPerformanceFee (260ms)

✓ Should setManagementFee (331ms)

✓ Should addStrategy [0] (10901ms)

When !flashLoanActive
When deficit

✓ Should deposit { user: 0xCB0... } (1980ms)

✓ Should deposit { user: 0x129... } (1807ms)
✓ Should harvest { delay: 43200000 } (23942ms)

✓ Should withdraw { user: 0xCB0... } (854ms)

✓ Should setFlashLoan to false (770ms)

✓ Should deposit { user: 0xCB0... } (1206ms)

25

✓ Should deposit { user: 0x129... } (1090ms)

✓ Should harvest { delay: 43200000 } (11658ms)

✓ Should withdraw { user: 0xCB0... } (829ms)

✓ Should withdraw { user: 0x129... } (2189ms)

Contract: xVault [1]
Initialize

✓ Should deploy (4068ms)

✓ Should setGovernance (373ms)

✓ Should setGovernance (327ms)

✓ Should setDepositLimit (296ms)

✓ Should setTreasury (410ms)

✓ Should setGuardian (436ms)

✓ Should setPerformanceFee (270ms)

✓ Should setManagementFee (207ms)

✓ Should addStrategy [0] (2849ms)

Success
Strategy [0]

Setup strategy
✓ Should call apiVersion (137ms)

✓ Should call delegatedAssets (140ms)

✓ Should call name (172ms)

✓ Should setStrategist (284ms)

✓ Should setKeeper (227ms)

✓ Should setRewards (224ms)

✓ Should setMinXvsToSell (294ms)

✓ Should setMinWant (274ms)

✓ Should setCollateralTarget (365ms)

Investments
✓ Should call priceCheck (1086ms)
✓ Should deposit { user: 0xCB0... } (1331ms)

✓ Should deposit { user: 0x129... } (1383ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: false, harvestTrigger: 7500000 } (5396ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: false, harvestTrigger: 7500000 } (2070ms)

✓ Should withdraw { user: 0x129... } (854ms)

✓ Should deposit { user: 0x129... } (1468ms)

✓ Should withdraw { user: 0x129... } (963ms)

✓ Should call getblocksUntilLiquidation (460ms)

Change strategy
Owner

26

✓ Should addStrategy [1] (10472ms)

✓ Should removeStrategyFromQueue [0] (354ms)

Strategy [1]
✓ Should deposit { user: 0xCB0... } (1125ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: false, harvestTrigger: false } (6126ms)

✓ Should withdraw { user: 0xCB0... } (809ms)

Owner
✓ Should addStrategyToQueue [0] (419ms)

✓ Should updateStrategyDebtRatio (451ms)

✓ Should updateStrategyRateLimit (256ms)

✓ Should updateStrategyPerformanceFee (259ms)

Strategy [0, 1]
✓ Should deposit { user: 0xCB0... } (1562ms)

✓ Should deposit { user: 0x129... } (929ms)

✓ Should call expectedReturn [0] (656ms)

✓ Should call creditAvailable [0] (186ms)

✓ Should call availableDepositLimit (179ms)
✓ Should call pricePerShare (158ms)

✓ Should call maxAvailableShares (224ms)

✓ Should call totalAssets (201ms)

✓ Should call getApy (125ms)

✓ Should call delegatedAssets [0] (131ms)

✓ Should setProfitFactor [0] (207ms)

✓ Should setDebtThreshold [0] (235ms)

✓ Should setMaxReportDelay [0] (244ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: 7500000, harvestTrigger: 7500000 } (13749ms)

✓ Should withdraw { user: 0xCB0... } (1106ms)

✓ Should deposit { user: 0x129... } (1270ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: 7500000, harvestTrigger: 7500000 } (9002ms)

Owner
✓ Should deploy strategy [2] (6024ms)

✓ Should tend [0] (574ms)

✓ Should setForceMigrate [0] (187ms)

✓ Should migrateStrategy [0 -> 2] (3444ms)

✓ Should setEmergencyExit [1] (3161ms)

✓ Should setWithdrawalQueue (428ms)

 Strategy [2]
When !flashLoanActive

✓ Should setFlashLoan to false (770ms)

27

When !deficit
✓ Should deposit { user: 0xCB0... } (1117ms)

✓ Should deposit { user: 0x129... } (1212ms)

✓ Should trigger harvest/tend { delay: 43200000,
tendTrigger: 7500000, harvestTrigger: 7500000 } (4044ms)

✓ Should withdraw { user: 0xCB0... } (926ms)

✓ Should withdraw { user: 0x129... } (853ms)

Owner
✓ Should deploy strategy [3] (8120ms)

Strategy [3]
When !flashLoanActive

When !deficit
✓ Should deposit { user: 0xCB0... } (1359ms)

✓ Should deposit { user: 0x129... } (1358ms)

✓ Should harvest { delay: 43200000 } (3013ms)

✓ Should withdraw { user: 0xCB0... } (700ms)

✓ Should setFlashLoan to false (597ms)

✓ Should deposit { user: 0xCB0... } (1181ms)

✓ Should deposit { user: 0x129... } (1245ms)

✓ Should harvest { delay: 43200000 } (2260ms)

✓ Should withdraw { user: 0xCB0... } (799ms)

✓ Should withdraw { user: 0x129... } (906ms)

Owner
✓ Should deploy strategy [4] (5770ms)

✓ Should migrate strategy [3 -> 4] (4823ms)

When emergency shutdown
✓ Should deposit { user: 0xCB0... } (1380ms)

✓ Should deposit { user: 0x129... } (1128ms)

✓ Should setEmergencyShutdown (1711ms)

✓ Should harvest { delay: 43200000 } (2977ms)

✓ Should withdraw { user: 0xCB0... } (918ms)

✓ Should withdraw { user: 0x129... } (885ms)

✓ Should NOT deposit
When strategy recieves wrong tokens

✓ Should setProtectedTokens (2125ms)

✓ Should send token to strategy (498ms)

✓ Should sweep token (878ms)

215 passing (8m)

Website:
Email:

vidma.io
security@vidma.io

We are delighted to have a chance to work
together with Xend Finance team and contribute
to their success by reviewing and certifying the
security of the smart contracts.

The statements made in this document should
not be interpreted as investment or legal advice,
nor should its authors be held accountable for
decisions made based on them.

mailto:security@vidma.io

