
Project: 
Date:

Xend Finance 
June 22nd, 2022

Smart 
Contract

Audit

01

Table of contents
. .Summary 02

. .Scope of Work 05

. .Workflow of the auditing process 06

. .Structure and organization of the findings 08

. .Manual Report 10

Low Resolved

. 10Useless function declaration

Low Resolved

. 10Lack of event emit while some important data is setted

Informational Resolved

. 11Lack of NatSpec annotation

Informational Resolved

. 11Naming convention

Informational Resolved

. 11Contract name does not match the filename

. .Test Results 12

. .Tests written by Vidma auditors 13

02

Summary
Vidma is pleased to present this audit report outlining our assessment of code,
smart contracts, and other important audit insights and suggestions for
management, developers, and users.

During the audit process, we reviewed strategy based on Alpaca AUSD protocol to
earn profit from depositing funds into the Vault contract. Expect Alpaca AUSD
protocol this strategy also relies on Ellipsis Liquidity protocol and Pancakeswap.
Audited smart contracts are following security best practices and code style.

During the audit process, the Vidma team found several issues, which were
successfully fixed by Xend Finance team. A detailed summary and the current
state are displayed in the table below.

Severity of the issue

Critical

High

Medium

Low

Informational

Total

0 issues

0 issues

0 issues

2 issues

3 issues

5 issues

Total found

0 issues

0 issues

0 issues

2 issues

3 issues

5 issues

Resolved

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Unresolved

03

After evaluating the findings in this report and the final state after fixes, the Vidma
auditors can state that the contracts are fully operational and secure. Under the
given circumstances, we set the following risk level:

High Confidence

Our auditors are evaluating the initial commit given for the scope of the audit and
the last commit with the fixes. This approach helps us adequately and
sequentially evaluate the quality of the code. Code style, optimization of the
contracts, the number of issues, and risk level of the issues are all taken into
consideration. The Vidma team has developed a transparent scoring system
presented below.

Severity of the issue

Critical

High

Medium

Low

Informational

1

0.8

0.5

0.2

0

Resolved

10

7

5

0.5

0.1

Unresolved

Please note that the points are deducted out of 100 for each and every issue on the list of
findings (according to the current status of the issue). Issues marked as “not valid” are not
subject to point deduction.

04

Based on the overall result of the audit, the
Vidma audit team grants the following score: 99.60

In addition to manual check and static analysis, the auditing team has conducted
a number of integrated autotests to ensure the given codebase has an adequate
performance and security level.

The test results and the coverage can be found in the accompanying section of
this audit report.

Please be aware that this audit does not certify
the definitive reliability and security level of the
contract. This document describes all
vulnerabilities, typos, performance issues, and
security issues found by the Vidma audit team.
If the code is still under development, we highly
recommend running one more audit once the
code is finalized.

!

05

Credit Unions, Cooperatives, and Individuals anywhere in the world can now
earn higher interests in stable currencies on their savings.

Within the scope of this audit, two independent auditors thoroughly investigated
the given codebase and analyzed the overall security and performance of the
smart contracts.

The audit was conducted from June 1st, 2022 to June 22nd, 2022. The outcome
is disclosed in this document.

The scope of work for the given audit consists of the following contracts:

AlpacaAusdEpsStrategy;
BaseStrategy.

The source code was taken from the following source:
https://github.com/xendfinance/x-vault/tree/alpaca-eps-strategy

Initial commit submitted for the audit:
caaad2c9c4ecca7c95914c45b2ce294622127a70

Last commit reviewed by the auditing team:
67fb80862c67fdc462bd07d7d47256a330c47ff7

As a reference to the contracts logic, business concept, and the expected
behavior of the codebase, the Xend Finance team has provided the following
documentation:
https://github.com/xendfinance/x-vault/blob/5a9478e966ec1ab5e6df4e076b3af
dbc5b964d8b/README.md

Scope of work

https://github.com/xendfinance/x-vault/tree/alpaca-eps-strategy
https://github.com/xendfinance/x-vault/commit/caaad2c9c4ecca7c95914c45b2ce294622127a70
https://github.com/xendfinance/x-vault/commit/67fb80862c67fdc462bd07d7d47256a330c47ff7
https://github.com/xendfinance/MadWalletDEXAggregator
https://github.com/xendfinance/MadWalletDEXAggregator
https://github.com/xendfinance/MadWalletDEXAggregator
https://github.com/xendfinance/x-vault/blob/5a9478e966ec1ab5e6df4e076b3afdbc5b964d8b/README.md
https://github.com/xendfinance/x-vault/blob/5a9478e966ec1ab5e6df4e076b3afdbc5b964d8b/README.md

Workflow of the auditing
process
Vidma audit team uses the most sophisticated and contemporary methods and
well-developed techniques to ensure contract is free of vulnerabilities and security
risks. The overall workflow consists of the following phases:

Phase 1: The research phase

Research

After the Audit kick-off, our security team conducts research on the contract’s
logic and expected behavior of the audited contract.

Documentation reading

Vidma auditors do a deep dive into your tech documentation with the aim of
discovering all the behavior patterns of your codebase and analyzing the potential
audit and testing scenarios.

The outcome

At this point, the Vidma auditors are ready to kick off the process. We set the
auditing strategies and methods and are prepared to conduct the first audit part.

Phase 2: Manual part of the audit

Manual check

During the manual phase of the audit, the Vidma team manually looks through the
code in order to find any security issues, typos, or discrepancies with the logic of
the contract. The initial commit as stated in the agreement is taken into
consideration.

Static analysis check

Static analysis tools are used to find any other vulnerabilities in smart
contracts that were missed after a manual check.

06

The outcome

An interim report with the list of issues.

Phase 3: Testing part of the audit

Integration tests

Within the testing part, Vidma auditors run integration tests using the Truffle or
Hardhat testing framework. The test coverage and the test results are inserted in
the accompanying section of this audit report.

The outcome

Second interim report with the list of new issues found during the testing
part of the audit process.

07

Structure and organization of
the findings
For simplicity in reviewing the findings in this report, Vidma auditors classify the
findings in accordance with the severity level of the issues. (from most critical to
least critical).

All issues are marked as “Resolved” or “Unresolved”, depending on if they have
been fixed by Xend Finance or not. The issues with “Not Valid” status are left on
the list of findings but are not eligible for the score points deduction.

The latest commit with the fixes reviewed by the auditors is indicated in the
“Scope of Work” section of the report.

The Vidma team always provides a detailed description of the issues and
recommendations on how to fix them.

Classification of found issues is graded according to 6 levels of severity described
below:

Critical

The issue affects the contract in such a way that funds may be lost or allocated
incorrectly, or the issue could result in a significant loss.
Example: Underflow/overflow, precisions, locked funds.

High

The issue significantly affects the ability of the contract to compile or operate.
These are potential security or operational issues.
Example: Compilation errors, pausing/unpausing of some functionality, a random
value, recursion, the logic that can use all gas from block (too many iterations in
the loop), no limitations for locking period, cooldown, arithmetic errors which can
cause underflow, etc.

08

09

FindingMedium

The issue slightly impacts the contract’s ability to operate by slightly hindering its
intended behavior.
Example: Absence of emergency withdrawal of funds, using assert for parameter
sanitization.

Low

The issue doesn’t contain operational or security risks, but are more related to
optimization of the codebase.
Example: Unused variables, inappropriate function visibility (public instead of
external), useless importing of SCs, misuse or disuse of constant and immutable,
absent indexing of parameters in events, absent events to track important state
changes, absence of getters for important variables, usage of string as a key
instead of a hash, etc.

Informational

Are classified as every point that increases onboarding time and code reading, as
well as the issues which have no impact on the contract’s ability to operate.
Example: Code style, NatSpec, typos, license, refactoring, naming convention (or
unclear naming), layout order, functions order, lack of any type of documentation.

Manual Report

10

Useless function declaration
Low Resolved

In BaseStrategy.sol contract there is function which is return
zero. There is no specific implementation of this function in the
AlpacaAusdEpsStrategy.sol contract.

delegatedAssets()

Recommendation:

Consider deleting the function or adding specific implementation in the
AlpacaAusdEpsStrategy.sol contract to provide actual data.

Lack of event emit while some important data is setted
Low Resolved

In the AlpacaAusdEpsStrategy.sol contract should be event emit for state
variables overriding and in the appropriate
functions and .

minAlpacaToSell collateralFactor
setMinAlpacaToSell() setCollateralFactor()

Recommendation:

Consider the emitting events in these specific cases to be able to track critical
data change.

11

Lack of NatSpec annotation
Informational Resolved

Some of the functions are covered by the NatSpec annotation. But also there are
functions where NatSpec is not provided.

Recommendation:

Consider fully covering SCs with NatSpec annotation.

Naming convention
Informational Resolved

There is a list of constants in the AlpacaAusdEpsStrategy.sol contract. According
to the solidity style guide, the constant should be named with all capital letters
with underscores separating words .UPPER_CASE_WITH_UNDERSCORES

Recommendation:

Consider changing the naming style of the contents according to the style guide
recommendation.

Contract name does not match the filename
Informational Resolved

Smart contract StrategyAlpacaAUSDEPSFarm doesn't match its filename,
AlpacaAusdEpsStrategy.sol. According to the style guide contract, library and
interface names should also match their filenames.

Recommendation:

Consider keeping the same name for the interface and the filename.

Test results

12

To verify the security of contracts and the performance, a number of integration
tests were carried out using the Truffle testing framework.

In this section, we provide both tests written by Xend Finance	and tests written by
Vidma auditors.

It is important to note that Vidma auditors do not modify, edit or add tests to the
existing tests provided in the Xend Finance repository. We write totally separate
tests with code coverage of a minimum of 95% to meet industry standards.

Vidma Coverage

Industry Standard

0% 25% 50% 100%75%

Vidma: 95.2% Standartd: 95%

Contract: BaseStrategy
functions:

harvest
✓ shouldn't harvest if caller isn't keeper (788ms)

✓ should harvest (5568ms)

✓ should harvest if exit is emergency (10541ms)

harvestTrigger
✓ shouldn't harvest strategy is not activated (2252ms)

✓ shouldn't harvest if caller isn't keeper (3723ms)

✓ should return true when function hadn't been called
in a while (449ms)

withdraw
✓ shouldn't withdraw if caller is not vault (258ms)

✓ should withdraw (619ms)

migrate
✓ shouldn't migrate if caller is not vault or

governance (186ms)

✓ shouldn't migrate if vault address is not the same (234ms)

✓ should migrate (797ms)

13

Tests written by Vidma auditors

Test Coverage

File

strategies\

AlpacaAusdEpsStrategy.sol

95.98

95.2

% Stmts

88.24

87.5

% Branch

100.00

100.00

% Funcs

95.63

BaseStrategy.sol 96.36 89.81 100.00 97.9

94.5

% Lines

All Files 95.98 88.24 100.00 95.63

Test Results

apiVersion
✓ should return correct version (108ms)

delegatedAssets
✓ should return correct delegated assets (97ms)

setStrategist
✓ couldn't set with zero address (239ms)

✓ should set strategist (269ms)

setKeeper
✓ couldn't set with zero address (222ms)

✓ should set keeper (294ms)

setRewards
✓ shouldn't set with zero address (234ms)

✓ should set rewards (299ms)

setProfitFactor
✓ should set profit factor (314ms)

setDebtThreshold
✓ should set debt threshold (200ms)

isActive
✓ should return status of strategy

sweep
✓ shouldn't remove tokens if token address is want

token (285ms)

✓ shouldn't remove tokens if token address is vault (221ms)

✓ shouldn't remove tokens if token address is protected (471ms)

✓ should sweet (1501ms)

setMaxReportDelay
✓ should set max report delay (296ms)

Contract: StrategyAlpacaAUSDEPSFarm
functions:

expectedReturn
✓ should return 0 when debt >= estimatedAssets (4822ms)

✓ should return sub of estimatedAssets and debt (1852ms)

harvestTrigger
✓ should return false when strategy isn't activated (508ms)

✓ should return false in the final return (3856ms)

✓ should return true when function hadn't been called
in a while (714ms)

prepareReturn
✓ should work when collateral < minAlpacaToSell
✓ should work when balance of want is less than needed (312ms)

✓ should work when balance of want is >= than needed (207ms)

14

name
✓ should return correct name (80ms)

setForceMigrate
✓ should set flag for forceful migration (625ms)

setMinAlpacaToSell
✓ should set minimum amount of alpaca token to sell (284ms)

setDisposalPath
✓ should set pancakeswap path (576ms)

setCollateralFactor
✓ shouldn't set with zero value (265ms)

✓ should set collateral factor (392ms)

41 passing (2m)

15

Website:
Email:

vidma.io
security@vidma.io

We are delighted to have a chance to work with
the Xend Finance team and contribute to your
company's success by reviewing and certifying
the security of your smart contracts

The statements made in this document should
be interpreted neither as investment or legal
advice, nor should its authors be held
accountable for decisions made based on this
document.

Vidma is a security audit company helping crypto companies ensure their code
and products operate safely and as intended, enabling founders to sleep soundly
at night. We specialize in auditing DeFi protocols, layer one protocols, and
marketplace solutions. Our team consists of experienced and internationally
trained specialists. Our company is based in Ukraine, known for its strong
engineering, cryptography, and cybersecurity culture.

http://www.vidma.io
mailto:security@vidma.io

