
Project: 
Date:

Xend Finance 
February 14th, 2022

Smart 
Contract

Audit

01

Table of contents
. .Summary 03

. .Scope of Work 06

. .Workflow of the auditing process 07

. .Structure and organization of the findings 08

. .Manual Report 09

Critical Resolved

. 09
PIt is not possible to make a deposit of tokens, so it is
impossible to withdraw them

Medium Resolved

. 09Avoid initial values in field declarations

Medium Resolved

. 10Function without implementation in AlpacaStrategy contract

Medium Not valid

. 10
Incorrect condition in function prepareMigration()
 at AlpacaStrategy contract

Low Resolved

. 11Duplicate of the function delegatedAssets()

Low Resolved

. 11Duplicate of the function distributeRewards()

Informational Resolved

. 11Interface name not match with the filename

Informational Resolved

. 12Order of layout

Informational Resolved

. 13Empty blocks

02

Informational Resolved

. 13Requires without explanationsgy.sol

Informational Resolved

. 13The condition is not provided for all possible options

Informational Resolved

. 14Unneeded import in the contract BaseStrategy

Informational Resolved

. 14Reassigning a value to a variable

Informational Resolved

. 14Unneeded imports in the contract AlpacaStrategy

. .Test results 15

. .Tests are written by Vidma 16

03

Summary
Vidma team has conducted a smart contract audit for the given codebase.

Contracts are in good condition. Based on the fixes provided by the Xend Finance
team and on the quality and security of the codebase provided, the Vidma team
can give a score of 97.6 to the audited smart contracts.

During the auditing process, the Vidma team has found 1 critical issue, 2 issues
with a medium level of severity, 2 issues with a low level of severity, a couple of
informational issues.

Severity of the issue

Critical

High

Medium

Low

Informational

Total

1 issue

0 issues

2 issues

2 issues

8 issues

13 issues

Total found

1 issue

0 issues

2 issues

2 issues

8 issues

13 issues

Resolved

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Unresolved

Evaluating the findings, we can assure that the contract is safe to use and all the
issues found are performed only by certain conditions and cases. Under the given
circumstances we can set the following risk level:

High Confidence

04

Based on the given findings, risk level,
performance, and code style, Vidma team can
grant the following overall score: 97.60

Vidma auditing team has conducted a bunch of integrated autotests to ensure
that the given codebase has decent performance and security levels.

The test results and the coverage can be found in the accompanying section of
this audit report.

Vidma auditors are evaluating the initial commit given for the scope of the audit
and the last commit with the fixes. Hence, it helps to adequately evaluate the
development quality. Code style, optimization of the contracts, amount, and risk
level of the issues are taken into consideration. The Vidma team has developed
the transparent scoring system presented below.

Severity of the issue

Critical

High

Medium

Low

Informational

1

0.8

0.5

0.2

0

Resolved

10

7

5

0.5

0.1

Unresolved

05

Please mind that this audit does not certify the
definite reliability and security level of the
contract. This document describes all
vulnerabilities, typos, performance issues, and
security issues found by Vidma auditing team.
If the code is under development, we
recommend run one more audit once the code
is finalized.

!

06

Credit Unions, Cooperatives, and Individuals anywhere in the world can now
earn higher interests in stable currencies on their savings.

Within the scope of this audit, two independent auditors deeply investigated the
given codebase and analyzed the overall security and performance of smart
contracts.

The debrief took place from Jan 12th to Feb 14th, 2021 and the final results are
present in this document.

Vidma auditing team has made a review of the following contracts:

AlpacaStrategy;
BaseStrategy;
IVault;
IAlpacaFarm;
IUniswapV2Router;
VaultAPI.

The source code was taken from the following sources:

https://github.com/xendfinance/x-vault/commit/88df2de

128b097bc89f3e2480b9c033337d901fc

Scope of work

Last commit:

b2d07c2b8e923601c2b92367c3bdacc673ff0331

Initial commit submitted for the audit:

88df2de128b097bc89f3e2480b9c033337d901fc

To conduct a more detailed audit, Xend Finance has provided the following
documentation: 
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9
V?usp=sharing

https://github.com/xendfinance/x-vault/commit/88df2de
128b097bc89f3e2480b9c033337d901fc
https://github.com/xendfinance/x-vault/commit/88df2de
128b097bc89f3e2480b9c033337d901fc
https://github.com/xendfinance/x-vault/commit/b2d07c2b8e923601c2b92367c3bdacc673ff0331
https://github.com/xendfinance/x-vault/commit/88df2de128b097bc89f3e2480b9c033337d901fc
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=sharing
https://drive.google.com/drive/folders/1ZxqTao1fuq41rnr9BbMDV4wdkxWEWL9V?usp=sharing

Workflow of the auditing
process
During the manual phase of the audit, Vidma team manually looks through the
code in order to find any security issues, typos, or discrepancies with the logic of
the contract.

Within the testing part, Vidma auditors run integration tests using the Truffle
testing framework. The test coverage and the tests themselves are inserted into
this audit report.

Vidma team uses the most sophisticated and contemporary methods and
techniques to ensure the contract does not have any vulnerabilities or security
risks:

Re-entrancy;
Access Management Hierarchy;
Arithmetic Over/Under Flows;
Unexpected Ether;
Delegatecall;
Default Public Visibility;
Hidden Malicious Code;
Entropy Illusion (Lack of Randomness);
External Contract Referencing;
Short Address/Parameter Attack;
Unchecked CALL Return Values;
Race Conditions / Front Running;
General Denial Of Service (DOS);
Uninitialized Storage Pointers;
Floating Points and Precision;
Tx.Origin Authentication;
Signatures Replay;
Pool Asset Security (backdoors in the underlying ERC-20).

07

Structure and organization of
the findings
For the convenience of reviewing the findings in this report, Vidma auditors
classified them in accordance with the severity of the issues. (from most critical
to least critical). The acceptance criteria are described below.

All issues are marked as "Resolved" or "Unresolved", depending on whether they
have been fixed by Xend Finance or not. The latest commit, indicated in this audit
report should include all the fixes made.

To ease the explanation, the Vidma team has provided a detailed description of
the issues and recommendations on how to fix them.

Hence, according to the statements above, we classified all the findings in the
following way:

Critical

High

Medium

Low

Informational

The issue bear a definite risk to the contract, so it may
affect the ability to compile or operate.

Major security or operational risk found, that may harm
the end-user or the overall performance of the contract.

The issue affects the contract to operate in a way that
doesn’t significantly hinder its performance.

The found issue has a slight impact on the performance
of the contract or its security.

The issue does not affect the performance or security of
the contract/recommendations on the improvements.

Finding Description

08

Manual Report

09

It is not possible to make a deposit of tokens, so it is
impossible to withdraw them

Critical Resolved

When testing the function, the function is called
from the alpacaFarm contract, which checks the caller in the require

setEmergencyExit() withdraw()

user.fundedBy == msg.sender, "only funder";

To satisfy this condition, it is logical that you first need to call the
function from the same contract. However, for correct work, the caller should be a
strategy, not just a call from the user directly. The contract does not find a call for
this function.

deposit()

Recommendation:

Add the function in the strategy.deposit()

Avoid initial values in field declarations
Medium Resolved

As the AlpacaStrategy contract should be upgradable by Proxy pattern it is
required to not use initial values in field declarations in such cases.

Recommendation:

Consider moving initialization of variables and into
the function. Also, as a recommendation, you can avoid directly
initializing with value as by default bool variables equal false.

minAlpacaToSell forceMigrate
 initialize()

forceMigrate false

10

Function without implementation in AlpacaStrategy
contract

Medium Resolved

In the AlpacaStrategy contract there is function which has no
implementation.

distributeRewards()

Recommendation:

Consider adding an implementation to the function or provide any information
why AlpacaStrategy contract doesn't need this logic.

Incorrect condition in function at
AlpacaStrategy contract

prepareMigration()

Medium Not valid

In the AlpacaStrategy contract in function there is check if
migration is allowed. In the current code, there is a possibility to call

 when the variable is equal to instead of .
In this case, the function will be able to call immediately after
the contract deployment.

prepareMigration()

prepareMigration() forceMigrate false true
prepareMigration()

Recommendation:

Consider fixing the condition in the function.prepareMigration()

Re-Audit:

An explanation was provided by the Xend Finance team:

“Generally, is false so it forces to withdraw all assets from alpaca
protocol and do the migration, but when facing an issue with alpaca protocol so
can't withdraw assets, then set , so enables to do the migration
without withdrawing assets from alpaca protocol”.

forceMigrate

forceMigrate true

11

Duplicate of the function delegatedAssets()
Low Resolved

In the contract AlpacaStrategy used the function that was
declared in the contract BaseStrategy without any changes.

delegatedAssets()

Recommendation:

Remove function from AlpacaStrategy contract to follow the DRY pattern.

Duplicate of the function distributeRewards()
Low Resolved

The implementation for was added to correct a previously
found issue regarding the not added implementation of this function. But it is the
same as the implementation in BaseStrategy contract so it makes sense to not
override in AlpacaStrategy but keep it only in BaseStrategy
contract to follow the DRY pattern.

distributeRewards()

distributeRewards()

Recommendation:

Remove function from AlpacaStrategy contract to follow the DRY pattern.

Interface name not match with the filename
Informational Resolved

Interface IAlpacaVault doesn't match with its filename which is IVault.sol.
According to the style guide contract, library and interface names should also
match their filenames.

Recommendation:

Consider keeping the same name for the interface and the filename.

12

Order of layout
Informational Resolved

The layout contract elements in the BaseStrategy contract are not logically
grouped.

Inside each contract, library or interface, use the following order:

Library declarations (using statements);
Constant variables;
Type declarations;
State variables;
Events;
Modifiers;
Functions.

Functions should be grouped according to their visibility and ordered in the
following way:

Constructor;
Receive function (if exists);
Fallback function (if exists);
External;
Public;
Internal;
Private.

Recommendation:

Consider changing layout and functions order according to solidity style guide
documentation.

13

Empty blocks
Informational Resolved

In both AlpacaStrategy and BaseStrategy contracts there is an empty constructor.
As the constructor function is optional you can avoid using it in case of no
implementation.

Recommendation:

Consider removing the empty constructor.

Requires without explanations
Informational Resolved

Requires in the functions of the BaseStrategy contract without comments.

Recommendation:

Add comments to the requirements where needed.

The condition is not provided for all possible options
Informational Resolved

The condition in function of the AlpacaStrategy contract is not
provided for all possible options, it is better to include all possible options for
testing.

expectedReturn()

Recommendation:

Сhange condition (line 92) to if .debt >= estimatedAssets

14

Unneeded import in the contract BaseStrategy
Informational Resolved

In the contract, BaseStrategy used unneeded import of interface IERC20.sol
because it imports from another interface VaultAPI.sol that was also imported in
this contract.

Recommendation:

Remove IERC20 from import in BaseStrategy contract.

Reassigning a value to a variable
Informational Resolved

In the contract BaseStrategy the value of the variable is assigned.
The same value is assigned in the contract AlpacaStrategy.

maxReportDelay

Recommendation:

Remove reassigning a value to a variable from AlpacaStrategy contract to follow
the DRY pattern.

Unneeded imports in the contract AlpacaStrategy
Informational Resolved

In the contract AlpacaStrategy used unneeded imports of SafeERC20 for IERC20,
SafeMath for uint256, because it is importing in the BaseStrategy contract.

Recommendation:

Remove SafeERC20 and SafeMath (lines 11, 13) from AlpacaStrategy contract to
follow the DRY pattern.

Test results

15

To verify the contract security and performance a bunch of integration tests were
made using the Truffle testing framework.

Tests were based on the functionality of the code, business logic, and

requirements and for the purpose of finding the vulnerabilities in the contacts.

In this section, we provide tests written by Vidma auditors.

Vidma Coverage

Industry Standard

0% 25% 50% 100%75%

It’s important to note that Vidma auditors do not modify, edit or add tests to the
existing tests provided in the Xend Finance repo. We write totally separate tests
with code coverage of a minimum of 95%, to meet the industry standards.

Vidma: 95% Standartd: 95%

16

Tests are written by Vidma

Test Coverage

File

interfaces\

IAlpacaVault.sol

strategies\

AlpacaStrategy.sol

BaseStrategy.sol

interfaces\alpaca\

VaultAPI.sol

IAlpacaFarm.sol

interfaces\uniswap\

IUniswapV2Router.sol

All files

100.00

100.00

100.00

95.88

94.12

100.00

100.00

100.00

100.00

100.00

95.00

% Stmts

100.00

100.00

83.93

77.38

90.48

100.00

100.00

100.00

100.00

100.00

83.93

% Branch

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

% Funcs

100.00

100.00

100.00

95.45

95.24

100.00

100.00

100.00

100.00

100.00

95.34

% Lines

17

Contract: StrategyAlpacaFarm
StrategyAlpacaFarm Initializing Phase Test Cases

✓ should initialize ibToken address correctly (100ms)

✓ should initialize maxReportDelay correctly (114ms)

✓ should initialize path's addresses correctly (188ms)

StrategyAlpacaFarm Set/Get Functions Phase Test Cases
✓ should get name correctly (128ms)

✓ should set force migrate correctly (623ms)

✓ shouldn't set force migrate if caller isn't
governance (486ms)

✓ should set min value to sell correctly (455ms)

✓ shouldn't set min value to sell if caller isn't
management (343ms)

✓ should set disposal path correctly (736ms)

✓ should get tend trigger correctly (98ms)

✓ should get expected return correctly (19963ms)

✓ should check price correctly (1628ms)

✓ should do deposit from strategy correctly (1142ms)

StrategyAlpacaFarm Harvest Function Phase Test Cases
✓ should get harvest trigger correctly (2934ms)

✓ should get harvest trigger correctly if do
harvest several times (3) (19071ms)

Contract: BaseStrategy
BaseStrategy Initializing Phase Test Cases

✓ should initialize vault address correctly (109ms)

✓ should initialize want address correctly (254ms)

✓ should approve tokens correctly (126ms)

✓ should initialize strategist address correctly (128ms)

✓ should initialize rewards address correctly (164ms)

✓ should initialize keeper address correctly (123ms)

✓ should set ptotected tokens correctly (137ms)

✓ should initialize profitFactor correctly (95ms)

✓ should initialize debtThreshold correctly (207ms)

✓ should initialize maxReportDelay correctly (105ms)

✓ shouldn't initialize again (201ms)

BaseStrategy Set/Get Functions Phase Test Cases
✓ should get api version correctly (112ms)

✓ should get delegated assets correctly (422ms)

Test Results

18

✓ shouldn't set strategist if zero's address (276ms)

✓ shouldn't set strategist if caller isn't authorized (270ms)

✓ should set keeper address correctly (386ms)

✓ shouldn't set keeper if zero's address (230ms)

✓ should set rewards address correctly (471ms)

✓ shouldn't set rewards if zero's address (209ms)

✓ shouldn't set rewards if caller isn't strategist (269ms)

✓ should get info about active correctly (3538ms)

✓ should set profit factor correctly (387ms)

✓ should set debt threshold correctly (363ms)

✓ should set report delay correctly (329ms)

BaseStrategy Withdraw Functions Phase Test Cases
✓ should withdraw alien tokens from this strategy

correctly (1429ms)

✓ should get harvest trigger correctly if do
harvest several times (4) (19071ms)

✓ shouldn't withdraw alien tokens from this
strategy if token is want's address (268ms)

✓ shouldn't withdraw alien tokens from this strategy
if token is vault's address (300ms)

✓ shouldn't withdraw alien tokens from this strategy
if token is protected (392ms)

✓ shouldn't withdraw assets to the vault if caller
isn't vault (303ms)

BaseStrategy Harvest & Emergency Exit Functions Phase
Test Cases

✓ should do harvest correctly if emergencyExit
is false (2169ms)

✓ should do harvest correctly if emergencyExit
is true (6059ms)

✓ shouldn't do harvest if caller isn't keeper,
strategist or governance (340ms)

✓ should get harvest trigger correctly (16151ms)

✓ should do harvest twice correctly (8955ms)

✓ should set emergency exit correctly (4734ms)

✓ shouldn't set emergency exit if can't be sent
balance of strategy from alpaca token (6644ms)

BaseStrategy Migrate Function Phase Test Cases
✓ should migrate strategies correctly (16971ms)

✓ shouldn't migrate strategy if caller isn't
vault or governance (2356ms)

19

✓ shouldn't migrate strategy if new strategy isn't
vault (24764ms)

BaseStrategy Tend Function Phase Test Cases
✓ should do tend correctly (2335ms)

57 passing (4m)

Website:
Email:

vidma.io
security@vidma.io

We are delighted to have a chance to work
together with Xend Finance team and contribute
to their success by reviewing and certifying the
security of the smart contracts.

The statements made in this document should
not be interpreted as investment or legal advice,
nor should its authors be held accountable for
decisions made based on them.

mailto:security@vidma.io

